Special Eccentric Vertices for the Class of Chordal Graphs and Related Classes

نویسندگان

  • Pablo De Caria
  • Marisa Gutierrez
چکیده

A vertex is simplicial if the vertices of its neighborhood are pairwise adjacent. It is known that, for every vertex v of a chordal graph, there exists a simplicial vertex among the vertices at maximum distance from v. Here we prove similar properties in other classes of graphs related to that of chordal graphs. Those properties will not be in terms of simplicial vertices, but in terms of other types of vertices that are used to characterize those classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Eccentric Vertices for Chordal and Dually Chordal Graphs and Related Classes

It is known that any vertex of a chordal graph has an eccentric vertex which is simplicial. Here we prove similar properties in related classes of graphs where the simplicial vertices will be replaced by other special types of vertices.

متن کامل

Eccentric Connectivity Index: Extremal Graphs and Values

Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...

متن کامل

Eccentric Connectivity Index of Some Dendrimer Graphs

The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.

متن کامل

Complement of Special Chordal Graphs and Vertex Decomposability

In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.

متن کامل

The Simultaneous Membership Problem for Chordal, Comparability and Permutation graphs

In this paper we introduce the simultaneous membership problem, defined for any graph class C characterized in terms of representations, e.g. any class of intersection graphs. Two graphs G1 and G2, sharing some vertices X (and the corresponding induced edges), are said to be simultaneous members of graph class C, if there exist representations R1 and R2 of G1 and G2 that are “consistent” on X ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2014